Competing Photocurrent Mechanisms in Quasi-Metallic Carbon Nanotube pn Devices.

نویسندگان

  • Moh R Amer
  • Shun-Wen Chang
  • Stephen B Cronin
چکیده

Photodetectors based on quasi-metallic carbon nanotubes exhibit unique optoelectronic properties. Due to their small bandgap, photocurrent generation is possible at room temperature. The origin of this photocurrent is investigated to determine the underlying mechanism, which can be photothermoelectric effect or photovoltaic effect, depending on the bandgap magnitude of the quasi-metallic nanotube.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zener tunneling and photocurrent generation in quasi-metallic carbon nanotube pn-devices.

We investigate the electronic and optoelectronic properties of quasi-metallic nanotube pn-devices, which have smaller band gaps than most known bulk semiconductors. These carbon nanotube-based devices deviate from conventional bulk semiconductor device behavior due to their low-dimensional nature. We observe rectifying behavior based on Zener tunneling of ballistic carriers instead of ideal dio...

متن کامل

Photocurrent spectroscopy of exciton and free particle optical transitions in suspended carbon nanotube pn-junctions

Articles you may be interested in Single carbon nanotube photovoltaic device Scanning photocurrent and photoluminescence imaging of a frozen polymer p-n junction Appl. Large-signal and high-frequency analysis of nonuniformly doped or shaped pn-junction diodes Direct probe of excitonic and continuum transitions in the photocurrent spectroscopy of individual carbon nanotube p-n diodes Appl.

متن کامل

Field-enhanced photocurrent spectroscopy of excitonic states in single-wall carbon nanotubes.

Excitonic and free-carrier transitions in single-wall carbon nanotubes are distinguished using field-enhanced photocurrent spectroscopy. Electric field dissociation allows for the detection of bound-exciton states that otherwise would not contribute to the photocurrent. Excitonic states associated with both the ground-state semiconductor and the ground-state metallic nanotube transitions are re...

متن کامل

Photocurrent imaging of charge transport barriers in carbon nanotube devices.

The realization of high-performance electrical devices incorporating single-wall carbon nanotubes critically depends on the minimization of charge transport barriers in the tubes and at the contacts. Herein we demonstrate photocurrent imaging as a fast and effective tool to locate such barriers within individual metallic nanotubes contacted by metal electrodes. The locally induced photocurrents...

متن کامل

Displacement current detection of photoconduction in carbon nanotubes

Using a capacitive photocurrent measurement technique, we demonstrate the ability of both semiconducting and metallic single wall nanotubes to function as photodetectors over a wide spectral range. We observe clear peaks in the photo induced displacement current of a nanotube-plated capacitor that correspond directly to the semiconducting and metallic transitions in the nanotube absorbance spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Small

دوره 11 26  شماره 

صفحات  -

تاریخ انتشار 2015